Jonathan Chisum

Notre Dame researchers, led by NSF SpectrumX research partner, develop new, ultra-power-efficient 5G antenna

By Brett Beasley

Globally, two billion people use fifth-generation (5G) wireless networks. These users have gained more rapid upload and download speeds, lower latency, and greater reliability on their mobile devices. But the rollout of 5G technology has also come with a steep energy cost. 5G networks require more energy than previous generations, with each base station consuming as much energy as 73 U.S. households.

Now, with funding from the U.S. Army, researchers at the University of Notre Dame are launching an effort that could help reverse this trend. The team will apply prior research conducted at the University on the physics of low-power antennas. Working with a set of industry partners, they aim to produce an antenna that delivers 5G-level performance while using less than ten percent of the energy.

The team is led by Jonathan Chisum, an associate professor in the Department of Electrical Engineering and an affiliate of Notre Dame’s Wireless Institute. Chisum says the key to the new antenna is a kind of artificial dielectric material designed and built in his lab.

“Right now, a large portion of the cost to operate a cellular network is for electricity. If you look at a cell tower, you can see why: It uses a different antenna for each band, and these rely on active, powered chips,” Chisum said. “Our initial idea was simple: What if we could design similar capabilities into just one very wideband antenna by letting the physics of materials do the work normally done by many power-hungry chips.”

The new low-power antenna is a type of millimeter-wave gradient index (GRIN) lens antenna. Although GRIN lenses have existed for over a century, the idea of developing a GRIN lens antenna for 5G networks once seemed far-fetched to most researchers in the field of wireless technology. However, over the past eight years, Chisum and his lab have made groundbreaking discoveries in the fundamental science of wideband beam steering. These findings have allowed Chisum and his team to create one antenna that can operate over all the frequency bands for 5G, a feat once thought to be impossible.

Read the full story at research.nd.edu

Jonathan Chisum is a valued research partner of NSF SpectrumX.

Originally published by Brett Beasley at research.nd.edu on March 12, 2025.

Share this Story

Team Members

Research Partner
University of Notre Dame

ORganizations

Working Groups